Summer Pre-Calculus review for AP Calculus AB

Name:

due on/before August 24, 2022

On the graph with the parent function draw and label a sketch of each additional equation in the family. Check your sketch with the graphing calculator.

1) Parent Function: $y=x^{2}$
a) $y=x^{2}-5$
b) $y=(x-10)^{2}$
c) $y=-2 x^{2}$
d) $y=-(x+3)^{2}+6$

2) Parent Function: $y=\sin x$ (set mode to RADIANS)
a) $y=\sin (2 x)$
b) $y=\sin x-2$
C) $y=2 \sin x$
d) $y=2 \sin (2 x)+2$

Summer Pre-Calculus review for AP Calculus AB

3) Parent Function: $y=\ln (x)$
a) $y=\ln (x+3)$
b) $y=-\ln (x)$
c) $y=\ln (-x)$
d) $y=\ln (|x|)$

4) Parent Function: $\quad y=e^{x}$
a) $y=2 e^{x}$
b) $y=e^{x}+3$
c) $y=e^{-x}$
d) $y=2-e^{x}$

Summer Pre-Calculus review for AP Calculus AB

5) Using your calculator (or Desmos) set the x "window" to $[0,1]$ and the y "window" to $[0,1]$. Graph all of the following functions in the same window. List the functions from the highest graph to the lowest graph.
a) $y=x^{2}$
b) $y=x^{3}$
c) $y=\sqrt{x}$
d) $y=x^{2 / 3}$
e) $y=|x|$
f) $y=x^{4}$

Highest	Letter
∇	
Lowest	

6) Using your calculator (or desmos) set the x "window" to values greater than 1 [to $[0,5]$ and the y "window" to $[0,5]$. Graph all of the following functions in the same window. List the functions from the highest graph to the lowest graph when $x>1$.
a) $y=x^{2}$
b) $y=x^{3}$
c) $y=\sqrt{x}$
d) $y=x^{2 / 3}$
e) $y=|x|$
f) $y=x^{4}$

Highest	Letter
∇	
Lowest	

Summer Pre-Calculus review for AP Calculus AB

More Calculator practice

7) Given: $f(x)=x^{4}-3 x^{3}+2 x^{2}-7 x-11$

Find all roots to the nearest 0.001
8) Given: $f(x)=3 \sin (2 x)-4 x+1$ on $[-2 \pi, 2 \pi]$

Find all roots to the nearest 0.001 .
Note: All trig functions are radian mode.

Solve the following inequalities.
9) $x^{2}-x-6>0 \quad$ (this can be a calculator or by hand)
10) $x^{2}-2 x-5 \geq 3$
11) $x^{3}-4 x<0$
12) Where does $f(x)=3 x+2$ intersect $g(x)=-4 x-2$?
13) Given: $\quad f(x)=x^{2}-5 x+2$ and $g(x)=3-2 x$

Find the coordinates of any points of intersection.
14) Solve by hand on the interval $[0,2 \pi]$. Leave your answer in terms of π. Check with your calculator. $2 \cos x+\sin 2 x=0$

Summer Pre-Calculus review for AP Calculus AB

15) If $f(x)=x^{4}-7 x^{3}+6 x^{2}+8 x+9$
a) Find the coordinates of the lowest point on the graph.
b) Find the coordinates of the highest point on the graph. $\$
c) Find the interval(s) over which $f(x)$ is increasing
16) Given $f(x)=x^{2}-5 x+4$
a) Sketch the graph of $\mathrm{f}(\mathrm{x})$ on the grid to the right.
b) By hand, sketch the graph of $|f(x)|$
c) By hand sketch the graph of $f(x)-2$

17) Find the equation for the given polynomial that goes through the points $(-4,0),(0,0)$, $(1,0),(2,12)$ and 3,0$)$ and touches the point $(-2,0)$. See the graph to the right. Show your work, check your solution with your calculator

Summer Pre-Calculus review for AP Calculus AB

18) Functions \rightarrow The ability to work with any type of function is crucial to success in calculus. This section will have you work with functions graphically and analytically, as well as test your knowledge of function notation.
A. Determine each of the following using the graph of $g(x)$. Each answer should be in terms of a, b, c, p, q or r.
i. $g(q)=$ \qquad iii. $\quad g(g(r))=$ \qquad
ii. $-g(p)=$ \qquad
vi. $g^{-1}(b)=$ \qquad
B. Fill in each blank with $<,>$ or $=$.
i. $g(p)$ \qquad $g(0)$
iii. $g(p)-g(q) _0$
ii. $\quad g^{-1}(c)$ \qquad $g^{-1}(0)$
vi. $g(0) \cdot g(q)$ \qquad

C. Given function $f(x)$ such that $f(-2)=5$, complete each of the following statements.
i. One (x, y) coordinate of a point that must be on the graph of $f^{-1}(x)$ is \qquad .
ii. If $f(x)$ is an odd function, then the (x, y) coordinates of 2 points that must be on the graph of $f(x)$ are \qquad and \qquad .
iii. If $f(x)$ is an even function, then the (x, y) coordinates of 2 points that must be on the graph of $f(x)$ are \qquad and \qquad .
D. Given the function $h(x)=\left\{\begin{array}{ll}-2 x-4, & x<-2 \\ -(x-1)^{2} & -3,\end{array}, x \geq 0\right.$, determine each of the following.
i. $\quad h(-2)=$ \qquad
ii. $h(0)=$ \qquad
iii. $h(5)-h(-3)=$ \qquad
iv. Determine the domain of $h(x)$.
v. Determine the range of $h(x)$.
vi. If they were defined for all the real numbers, at what point(s) do the two pieces of the function $h(x)$ intersect. i.e. Without using the graphing capabilities of your calculator, solve the following system of equations $\left\{\begin{array}{l}y=-2 x-4 \\ y=-(x-1)^{2}-3\end{array}\right.$
